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ABSTRACT

This paper presents the development and analysis of a wavcfront  control strategy for a dense
adaptive optics systcm  with segmented primary mirror. Systems of this type represent a substantial
departure from most conventional adaptive optics systems in that the deformable clcmcnt is the
segmented primary mirror and the fccdhack  signal includes both the local wavefront tilt and the
relative edge mismatch bctwccn adjacent segments. One of the major challenges in designing the
wavcfront  control systcm is the large number of suhapcrt  urcs that must bc commanded. A fast
and near optimal algorithm hascd on the local slope and edge measurements is defined for this
system.
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1. Introduction. This paper presents the dcvclopmcnt  and analysis of a wavcfront  control
schcmc for a dense adaptive optics systcm with scgmcntccl  primary mirror [1--5]. In addition to
the analysis of the controller, connections with optimal controllers and previously studied heuristic
controllers arc cstahlishcd.  And, perhaps most importantly, bccausc the systems considered in [2]
involve perhaps tens of thousands of subapcrturcs wc introduce “fast” algorithms that will help to
make practical their implementation. These algorithms arc explored more fully in the companion
paper [6].

The controller studied in this paper is derived from the assumption that the wavcfront  is
locally flat over each subapcrturc.  This assumption Icads to a strategy that involves a tw~stcp
implementation, requiring first the local correction for wavcfront  tilt for each subapcrturc,  followed
by a global correction for the piston error. Conventional AO systems employing a continuous
deformable mirror as the correcting optical clcmcnt achicvc the piston correction via a wavcfront
reconstruction process based on local gradient (tilt) information. The reconstruction process leads
to a discrctizcd  l’oisson equation with normal boundary conditions to estimate the wavcfront.
Bccausc the adaptive optical clcmtmt for this systcm is not a continuous surface, a slightly different
path must bc taken to correct the wavcfront.  This process entails the usc of edge displacement
mcasurcmcnts bctwccn adjacent mirror segments to supplcrncnt  the tilt measurements to fill in tic
gaps, so to speak, crcatcd by the discontinuous surface. The wavefront control law based on this
formulation is shown to lead to a discrctizcd  l’oisson equation as WC1l. The derived control law
turns out to bc identical to a control strategy based on the heuristic of first correcting for local
tilt and then minimizing the edge mismatch error in a least squares sense to make the scgmcntcd
mirror behave as a membrane, in analogy with continuous deformable mirrors. This particular
strategy has been pursued in several art iclcs  for controlling segmented mirrors [1 –5]. 1 Icre we ofler
a’ slightly different interpretation of this control strategy by connecting it with a global piston
correction. This connection is never made explicit in these papers.

It turns out that this control law is not optimal. The optimal controller exploits the coupling
that exists bctwccn the tilt mcasurcmcnt/correction and the edge mcasurcmcnts [7]. We define
t hc relationship bet wccn this optimal controller and the suboptirnal  controller dcscribcd  above,
and show that they arc equivalent when there is no tilt measurement error. The simplicity of the
structure of the suboptimal controller achicvcd by discarding the coupling terms is dramatic, both
in terms of implementation and analysis.

13ccausc  the control law is derived from a discrctizcd  I’oisson  equation, wc arc able to establish
some a pn”ori error bounds. It is shown that the global rms piston error duc to edge sensing is
approximately of unity magnitude for very large systems consisting of the order of 105 subapcrtures.
This result is important for setting accuracy rcquircrncnts  on candidate edge sensing devices. Wc
also show that the piston error grows logarithmically with the number of subapcrturcs.  IIcnce,
reducing segment size places tighter rcquircmcnts  on the edge sensor, although rather mildly, The
effect of reducing segment size actually has a more substantial effect on the reconstruction error
duc to tilt error. This growth turns out to bc linear with decreasing subapcrture  size if the number
of sensing photons over the entire aperture is fixed.

The computational aspects of implementing a controller for very large adaptive systems is
truly onc of the tcntpolcs  associated with making these systems practical, IIaving the control
matrix “in hand” dots not represent the most viable solution to this problcm,  since a systcm with
N2 subapcrturcs  requires N4 flops for each correction. (For example, the SELENE systcm [2],
which is envisioned to have approximately 250,000 subapcrturcs, a bandwidth of 100 IIz translates
to approximately 10 14 flops/see. ) lt,crative  methods such as multigrid  to construct approximate
controllers for trading computational accuracy with complexity have been investigated [5]. These
itcrat ivc methods are gencrall  y nondetcrministic  in the sense th at obtaining prccisc  a priori error
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bounds is di~cult.  Here wc introduce a novel implementation concept that is both “fast” and
deterministic by exploiting the relationship bctwccn the control law and the discretizcd  Poisson
equation. This implementation requires 0(iV210gN)  floating point operations to implement, where
lV2 again denotes the number of subapcxlures. The algorithm is based on embedding (regular-
izing) the Poisson problcm defined over the aperture into a problcrn  defined on a square. This
approach is in spirit similar to capacitance methods for regularizing domains in elliptic problems
[8,9]. However, the approach is unique in that wc fully exploit the special structure of the Icast
squares formulation and the availability of boundary information to extend the problcm  to a reg-
ular domain. (Capacitance methods arc quite different w they rely on decomposing the domain
into regular subdomains  and matching boundary conditions bctwccn the subdomains.  ) Fast solvers
based on the FFT (requiring just 0( N210glV)  flops) exist for solving the Poisson problcm on a
square domain [9, 10]. (A more complctc exposition of these algorithms is prcscntcd  in [6].) Bounds
on the incrcascd covariance  of the wavcfront  cst imatc int roduccd by t hc embedding procedure are
also presented, These bounds indicate the incrcascd error to bc rather  benign, perhaps a,.13
incrcasc for very large systems with 105 subapcrturcs.

2. An idealized problem. Let w(z) denote the instantaneous wavcfront, and let the
scgmcntcd  primary surface bc rcprcscnted  by the piccewisc linear function U(Z), .

i

where Ai denotes the itr’ segment, x(. ) = characteristic function (x( A~)(x)  = 1 if z E Ai, zero
otherwise), and ui (x) is linear. Let xi be the centroid  of Ai. Ideally wc would like to minimize the
wavefront error J,

JJ = Iw(x) -- U(Z)12dX,  A = UAi. (2)
A

11-om (2)

and note
Now

wc write

J = ~ JA IZU(Z) – Ua(x)12dz,
ii

(3)

that it is suflicicnt  to indcpcndcntly  minimize the error for each segment.
given that ui is linear, and assuming that w is C2 (two continuous derivatives), a rea-

sonable control statcgy is to choose ~i so that

Ui(Z) = W(Zi)j a n d  V~i(~i) = Vw(~i). (4)

This controller corrects for piston, tip and tilt across each subapcrturc. IIy satisfying (4) wc have
for x E Ai,

\W(Z)  – Ui(Z)l < l/2&l~  < (X ‘ Xl), W(&)(Z  – Xl) > , (5)

where W(t) denotes the IIcssian of w. Now if wc assume that the distance bctwccn adjacent
ccntroids is h, and the area of the total aperture is d 2, the number of segments comprising the
“primary, call it iV is of order N = 0(d2/h2).  The error J in (2) is now approximated as

(6)

x (PO(M),
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since

J lx - fc114dz = o(h6)
A~

and N = 0(d2/h2).  IIcncc,  the normalized rms wavcfront  error is

@P= 0(}12) (7)

where the constant is of the order SU~<EA  W(c). Wc note that this controller essentially corrects
for the piston, tip, and tilt across each subapcrturc. Nell [11 ] has dcrvicd  an expression for the
error as a function of the residual uncorrected Zcrnikc terms of the disturbance, and in this case
has shown the residual error to bc approximately .13 radians2  of phase based on a Kolmogorov
turtmlcncc  spectrum.

3. The nonidealizcd  problem. The idealized situation above is characterized by perfect
reconstruction of the wavcfront  W(Z) followed by the implementation of the control law dcflncd
in (4). This controller presupposes both global knowledge of the wavefront and of the aperture
function u(z).  In actual application neither of these is available. IIut before before considering
this configuration, wc will first treat an intcrrncdiatc  case bctwccn  the ideal and actual to show
how edge sensing contributes to the wavcfront  reconstruction problcm.

The prototype scgmcntcd mirror systcm wc study here is based on the SEIXN13 configuration
[2]. SEIJ3NE consists of hexagonal scgrncnts  arranged in the figure below:

Figure 3.1. Aperture Indexing Scheme

Wc take the distance bctwccn  adjacent centroids to bc h. Now wc make the following assump-
tions:

(i) W(Z) must bc estimated from the wavcfront  tilt mcasurcmcnts  Vwij = Vw($ij).
(ii) uij can only bc estimated from edge displ~.emcnt  mcasurcmcnts,  ~ij, and S%mcnt tilt

-measurements ‘Tij = V’U(~ij ).
IIcrc ~ij and Tij are both 2–vectors, ~ij ~ [t~j t~j],  and ~ij = [T; T,!]. (In the S131.ENE setting
wc only measure the diffcrcncc Vwij — Tij. This case will bc taken up shortly.)

I.ct ti denote a least squares or minimum, variance estimate of w. (Without loss of generality
wc will  assume that ti has been normalized so that ~ij ~ij = 0.) The gcomctv in the figure leads
to the edge displacement relationship
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for horizontal] y adjacent segments; and for diagonally adjacent segments

‘L (T/ff  ~j +  T:C~j = Ui+lj  –  Uij +  — . . – (T:+lj +7:)).
2&

(9a)

Bccausc  each segment of SELENE has edge sensors on every side, there is another mcasurcmcnt
corresponding to the southwest diagonal,

(9b)

(Wc will ignore this mcasurcmcnt  in the analysis and algorithm dcvclopmcnt  that follows, but
revisit it in [6].) Introduce the difference operator A,

[1A’
‘ = 

AY ‘ (10)

where
AZu = u~j~~ – Uij (lOa)

and
AYu z ui+-lj _ uij (lOb)

for u = [ul I U12...], (i.e., stacking u by rows in the array). Then (8)-(9) can bc written as

Au==b (11)

where b is a linear combination of the measured tilts. Now let O denote a least squares estirnatc
(or minimum variance estimate) of u. We will assume again that ti has been normalized so that
~ tiij == O. In this intcrmcdiatc case a compcnsatioxl  schcmc can bc defined by the local tilt
command, AT,

AT= VW–  T, Ti”=T+AT (12)

followed by the differential piston command, Au,

IIcrc T+, L+ denote the updated tilt and piston vectors. Note again that the differential command
Au requires the global reconstruction of the wavcfront  w, while AT only requires local mcasurc-
mcnts.

Next wc will treat the more general S131J3NIt case where wc do not have indcpcndcnt  mea-
surements of Vw and T, but only of their diffcrcncc y,

Yij = Vwij -- Tij. (14)

Note that wc still have the differential tilt command via (12)

AT = y, (15)

but wc cannot usc (13) for the differential piston command because the estimates ii, ti cannot be
formed. Ilowcvcr, observe that to implement (13) it is only ncccssary  to have an estimate of the
difference w – u. To this end assume that (15) has been implcmcntcd  so that wc may write

Vw = T. (16)
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Now since
Wij+~  —  Wij

T,; =
h

“t” o(tt2) ,

substituting (17) into (8) gives (neglecting the 0(h2)  .tcrm)

(17)

Also observe that

since

HCIICC,

And conscqucntly,

~~j = Uaj+.l  —  u~j  — $wij+2 ; ‘w + ‘i’+ ’h- “7
= uij+~ – Uij – l/2[’Wij+2  –  Wij].

@ h
T,; = — [W.ij – Wi+lj  + “T~,

h & J

‘i+’j  =  “j “ *(Tfi  -  ‘L)”

qw’j _  wi+_ljl , ~;

‘~ = h
. . .

(18)

(19)

(20)

(;1)

= ‘Wj+l  —  Uij  —  1 /’2[’Wi+2j  —  Wij 1.

NOW, wij+l –wij  and wi+.l j –wij  arc CIOSC approximations to 1 /~(wij+-2 –wij) and ~/z(wi+2j  –wij),
rcspcctivcly.  In fact all of these quantities arc just diffcrcncc  approximations to either ~w/8x  or
~w/@. The magnitude of their diffcrcncc is consequently 0(h2),  with constant again of order
ma~fEAi lW(Ol, i.e. for example

11/z(~i+2j - wi j )  - (wij+-1 - wij)l S 112 s~p [J’v(&)\c (23)

Putting (18), (22), and (23) together wc get

C~j  =  U’j+l  –  U’j –  (W~j+l  –  W’j) +  0(}L2) (24)

‘~j = Ui+lj –  Uij –  (Wi+lj –  ‘Wij) i 0(h2). (25)

Hcncc, for small ihl,
c N A(zL -w), (26)

and the least squares (or minimum variance) estimate of u – w can bc obtained directly from the
edge mcasurcmcnts after the local tilt corrections have been made. Thus the compensation schcmc
becomes:

(i) Implement the differential tilt command via (15)
(ii) l?stimatc 8, v = u -w, from (26) (more on this step in a little bit)
(iiii) Implement the differential piston command via(13)
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It is worthwhile to note that this two step control law can also be interpreted as minimizing
the least squares error in the adjacent edge mismatch ajtcr  tilt correction has been made. To scc
this suppose the differential tilt correction has been made, and now the objcctivc  is to implement
a piston command to minimize the edge error. I.ct U“ denote the vector of current ccntroid
displacements. Now recall (8)- (9):

E:j =  U~j~.~  —  U~j – h/~(T$+~ + T;) (8)

c~j =  ‘~+ 1 j  –  Ufj +- &(T~-lj +- ‘~ – (T~+lj + ~fi)). (9a)

After applying the differential command Au the adjusted edge error is simply

and
+CY

ij

Minimizing the vector ‘ c  = [+c~ +“CY]

= C: + Auij+l  ——  Auijt

E C~j + Aui+lj  – Au~j.
*

in the least squares sense leads to the problcm

n& [c +- AAu[2,

which is precisely the control law defined in Steps (i)--(iii) above.
This control law is very nearly optimal if the wavcfront  is locally flat over each subaperture.

The proof of this is skctchcd  below. Let W(Z) denote the instantaneous wavcfront,  and let the
instantaneous segmented primary surface be rcprcscntcd by the picccwisc linear function U“(x),

UO(X) c ~ X(Ai)(~)u~(~)
i

(cf (1 )). The objcctivc  is to implement a differential command Au(z) of the form

with each Aui a linear function on Ai to minimize the error

E(J) = J E[w(z) – U“(x) +- Au(x) [2dx, A = UA~,
A

(cf (2).) IIcre E denotes the expectation operator, and the rcquircmcnt  is that Au is measurable
with respect to the observed data, that is, it must bc a function of the tilt and edge sensor
.mcasurcments.  Write ‘U~(Z)  = w(z) – U$(Z),

j=O

where for each i, {Tij }~=o is a complctc  orthronormal systcm of functions on Ai with Z!’io = piston,
Til = tip, and T i2 = tilt, Since Aui(~) is linear,

Aui(~) = u i oT io + u ilT il + u i 2T i 2.
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Thus wc have

where ~ denotes the number of subapcrturcs. l~t u denote the vector with components u~j,  and Ict
o denote the vector with components ~~j, i = 1, . . . . ~; j = O, 1,2. The solution to the optimization
problcrn is to choose u as the conditional expectation, d, of a given the mcasurcmcnts.  Assuming
~io = t)(xa),  and [oil ~i2] = V~(~i ), (this is the assumption that the wavcfront  is locally planar),
it can bc shown that d is the minimum variance solution to the prob]cm

IIcrc y and c arc the tilt and edge displacement mcasurcmcnts  bejore correction, and W is the matrix
that kincmatically  links the tilt mcasurcmcnt  to the edge displacements. The control strategy of
first correcting for the tilt, followed by piston correction (or equivalently, minimizing the edge
displaccmcnts)  is the solution obtained by estimating Vu from the tilt mcasurcmcnt y alone and
ignoring the edge sensor mcasurcmcnt  altogether. The optimal (i.c,, minimum variance) solut~on
(SCC [7]) ,couplcs  the tilt and edge sensor mcasurcmcnts  at the considerable cxpcnsc of complicating
analysis and inhibiting the dcvclopmcnt  of fast solution tcchniqucs,  Thus wc opt for the suboptimal
least squares solution.

Along these same lines we note that although incorporating the data c’ from (9b) is straight-
forward, this too has a dclctcrious  effect in tcrms”of  algorithm dcisgn and analysis, The next two
sections dcscribc  implementation and analysis of the algorithm dcscribcd  in (i)--(iii) above, saris
the sensor data c’. The subject of utilizing the data c’ is taken up in [6].

4. Estimating u – w. The implcrncntation  of the control law outlined akwc  requires solving
the least squares problcm

mini A~– cl, (27)
z

where A is the the diffcrcncc  operator defined in (1 O) and c is defined in (24)-(25). On a square
grid this can bc accomplished via the usc of fast ]’oisson  solver techniques implcmcntcd  on serial
or parallc] machines since (27) reduces to the discrctizcd  Neumann problcm

Although the initial aperture geometry may not bc square, with a little care the resulting
least squares problcm can bc transformed to a square. I.ct Q denote the region occupied by the
aperture, and let R denote a square region containing Q. Now A is trivially cxtcndcd  from Q to
R Ilowcvcr, extending the forcing term c requires a little more consideration. In the deterministic
setting there arc constraints on how c extends since it is derived from a potential. Spccificall  y,
“ignoring 0(h2) terms,

x Cij = O.
clo.ved c o n t o u r

This constraint can bc incorporated in the following way. Suppose wc begin with a solution X.zt
defined on R, then Cezt is dctcrmincd from
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Figure 4.1. Regularization  Embedding Scheme

Now if X,xt = x in Q, then cez~ = c in Q, and cc~~ is an extension of E satisfying the velocity
constraints. If wc can determine the boundary values of x on af? call  this function zlan ~ then the
potential x.zt can be defined arbitrarily on It – C?, and thereby determining an extention cezt  to t.

From this discussion wc scc that the vector field c can bc cxtcndcd  (nonuniqucly)  to the square
once an estimate on the boundary is obtained. This approach also works for annular regions sifice
1 lartmann  sensor data is sutljcicnt  to reconstruct these boundary values as well.

To scc how this is done let UO, U1,  . ..UN denote the boundary
related by the d iffcrcncc cquat ion

‘1.li+.l = Ui +  Oi 4- ‘i)i, i== O,...,  N–

values of x on W2. The u:s are

1 (28)

(ai = slope measurement, qi = noise) with the periodic condition

(29)

The least squares solution to this problem is obtained by solving the systcm

h == f, f = J~cr (30)

where

(

2

: ‘o ; “) ‘=C :!:-::)

2 -.] ::: ()
R= :1 .

–1 o . . . –1 “2

Now 1/ has null space consisting of the vector [1 . . . 1 ]~, corresponding to a piston. IIowever,
solutions to this problcm arc easily obtained by imposing a constraint on u. Once u is obtained,
cez~ can bc defined with just [ 8QI (the number of points on the boundary OQ) adds by taking
xCZt = O on lt – Q, and wc can procccd  to SOIVC the Poisson equation.

This embedding proccdurc  will incrcasc  the covariancc  of the estimate. On an N x N square
grid, this Covariance  grows proportionally to sN [12],

‘1
sN=~~; Aij  =  ‘1 –  2COSL  –  2WSa.

N+l N+l
i J

Asymptotically, sN == 0( N210gN),  To get a handle on how this error grows with the embedding
wc calculated the ratios s8/s4, s80/&iO,  s160/t$80,  and s3XI/sl 60. Each of these ratios corresponds
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to the error variance incrcasc resulting from embedding a square region into another squrmc region
of twice the size (four t imcs the area). These results arc shown below

s8/s4 = 1.1914, sso/s40 = 1.1617, slIsI)/sfj(I = 1.1458, S3Zo/SINI = 1.1309.

For comparison the asymptotic cst imatcs arc

ss/s4  ~ 1.5, ssO/s40 % 1.1879, s160/sg0 N 1.1582, S3Z0/S1~O  ~ 1.1366.

In addition to this analytical analysis, wc also did Monte Carlo  simulations of the s8/s4 case.
500 simulations were run and wc empirically obtained

ss/S4 = 1.0698 (Monte Carlo).

This result is slightly  better than anticipated by the analytical estimate. The reason for this is that
the crnbcdding  procedure dcterministically  adds data. Thus a true minimum variance estimator
should very nearly yield a unity ratio for ss/s4. The least squares estimator is suboptimal  for
the cmbcddcd  problcm but should ncverthclcss  produce better results than given by the analytical
estimate. As another test wc conducted these same simulations without properly embedding the
problcrn.  We merely extended the gradient field by using zero values outside of the 4 x 4 square.
The results of these Monte Carlo runs were disastrous,

ss/s4  = 1.3779 x 103 (Monte CarlO,

5. Error analysis. IJct ti(z) denote the corrcci,cd
given by

improper embedding).

primary surface. From (3) the error J is

where pi denotes the piston error (pi = ~(~i)  – fi(~i)), Ti denotes the tilt error (Ti = [V~(~~) –
Vti(~i)] (Z – ~i))j and qi denotes the quadratic remainder tcr~n. Let E denote the expectation
operator. Assuming E(pi)

E(J) <

The individual terms
analyze the piston error

IJCt ‘V(Xi) = ‘W(Xi)  –  U(Zi)

= E(Ti) = O, and that qi is deterministic wc obtain

in the intcgrand  above will bc treated in more detail now. Wc first

. Rccal]  that the control law has the form Au = u + 0. Let a! denote a
zero mean random variable rcprcscnting  the actuator piston positioning error. Then

p i  =  
vi – Ci + a:.
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Assuming a? is indcpcndcnt from the reconstruction error va – tii, wc have

where u~~ is the variance of the actuator positioning error. Thus,

where d2 denotes the aperture area. The second tcrrn on the right above is the reconstruction error
associated with (26). Write (26) as

6= A?J+q,

where wc assume that E(q) = O,and E(?P17’) = c&Qel. ~Icrc a&. denotes the variance of the edge
sensor mcasurcmcnt. Normalizing by the total aperture area & wc have the mean square error

where A (Ai) denotes the area of the subapcrturc  Ai and X is the covariancc  matrix of the estimate
i),

x = r5((v  - O)T’(l)  –0))0

Now embed the SEIJ3NE apcr%urc into a square aperture with IV x N subapcrturcs.  An upper
bound for tr(X) can bc dcvclopcd  as4

Taking N = 400, the sum on the right

A,j  = 4 2 -  2COSL  – 2COST
N+l N+]

above is calculated as

leading to an rms piston error component

~~MsPi.ton <
r

2.057 X 105

‘ —  
fJedge ,M

where M denotes the number of subapcrturcs.
To compute the wavcfront  error duc to tilt error, wc will assume that

V’W(X~)  –  V’ii(Zi)  = vi,

where vi is a zero mean random variable with covariance  ~(~i~j)  = ~~~ij.  Note that v r’epmcnts
the combined Hartmann sensor error and tilt correction error. Thus

1
E(T:)dx  = u; J kc - u]2d$.Ai Ai
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This integral is computed over the hexagonal region Al as

.

Thus the R.MS tilt error is given as

J_IiiliMStilt  =  Tiuv}l.

Combining these error components wc obtain the mean square wavcfront  error

E(J) 2.057 X 1 05 ~
—< 0:.+ M 13  2 2 20”}1

r
2.057 X 105

(P ‘edge + fiuvh + ;((7:, + ~ ‘~dge )

+- fitting error.

If wc shrink the size of the segments so that h s O, wc observe that N grows linearly witkh.
And hence bccausc  of the asymptotic relationship

‘> 1L — == o(iv210gN),
Aijij

the rms piston error will grow as ~@V. Thus the improvement nccdcd in the edge sensors to
maintain the same error is rather benign. On the other hand if IIartmann  sensors arc used for the
tilt mcasurcmcnt, the error in this mcasurcmcnt is linearly related to the reciprocal of the segment
size. To sce this observe first that ior h < TO, u“ = clnA/16h{G,. where A = wavelength,
and NPhOtOn.  = number of photons captured over the subapcrturc5.  Now NP},OtOns is proportional
to h2. Thus Ov is proportional to 1/h.
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